1. Given: $y = -\frac{1}{2}(x+4)^2 - 1$, circle all that apply.

opens up down

(wider/narrower

left/right \(\square\)

up/down 1

Vertex: (-Ч, \)

Axis of Symmetry: $X = -\frac{1}{2}$ y-intercept: (0, -9)

Rewrite in standard form.

$$y = -\frac{1}{2}x^2 - 4x - 9$$

Sketch:

- 2. Use the quadratic equation $y = -2x^2 16x + 5$ to answer the following questions.
 - a. Does the quadratic open up or down?

down

b. Does the parabola have a maximum or minimum value?

maximum

What are the coordinates of the vertex?

d. Rewrite the equation in vertex form.

$$y = -2(x+4)^2 + 37$$

Identify the equation for the axis of symmetry.

What are the coordinates of the y intercept?

Identify the domain and range.

h. Sketch the parabola. Make a table that has at least 3 points.

3. Find the equation for the quadratic that contains the points (0,-3), (2,7), (4,13). (Do this without a graphing calculator, then check your answer with the Quadratic Regression feature of your calculator)

$$-3 = a(b)^{2} + b(0) + C \rightarrow C = -3$$

$$7 = a(a)^{2} + b(a) + C \rightarrow 7 = 4a + 2b - 3$$

$$13 = a(4)^{2} + b(4) + C \qquad 13 = 16a + 4b - 3$$

$$(4) + C$$
 $13 = 160 + 4b - 3$
 $\sqrt{13} = 160 + 4b - 3$

6=6

Y=-5x2+6x-3

- 4. Write the equation for the parabola with the given features:
 - a. focus (-4, 3) and vertex (-4. 6)

b. vertex (0, 5) and directrix y = 4

c. focus (2, 7) and directrix y=10

5. Find the focus, directrix, vertex, and sketch. $y = -\frac{1}{16}(x-2)^2 + 5$

- 6. An object is launched into the air from a ledge 16 feet off the ground with an initial velocity of 96 feet per second. Its height H, in feet, at t seconds is given by the equation: $H = -16t^2 + 96t + 16$.
 - a.) What is the maximum height the object will be off the ground?

$$\frac{-96}{2(-16)} = 3 \qquad H = -16(3)^2 + 96(3) + 16$$

$$160 + 1$$

b.) How long will it take for the object to reach that height?