Algebra II

- 1. If the solutions to a quadratic function are x = -10 and x = 7, write the function in standard form.
- 2. Solve the following quadratic equations by factoring. (No GC)

a.
$$4x^2 - 100 = 0$$

b.
$$6x^2 = -5x + 21$$

3. Solve the following quadratic equation by graphing. $f(x) = x^2 - 3x - 1$

Directions: For each of the following find the vertex, axis of symmetry, y-intercept, domain, range, maximum/minimum value, and find the x-intecepts. State the transformations and sketch the quadratic. (No GC)

4.
$$f(x) = (x-2)^2 - 16$$

5.
$$y = -x^2 + 2x + 3$$

- 6. The height of a bridge is given by $h(x) = -3x^2 + x$, where h(x) is the height of the bridge (in miles) and x is the number of miles from the base of the bridge.
- a. How far form the base of the bridge does the maximum height occur?

b. What is the maximum height of the bridge?

Algebra II

Quad. Review #2

Name

1. If the solutions to a quadratic function are x = -10 and x = 7, write the function in standard form.

$$(x+10)(x-1) = f(x)$$

 $x^2+3x-70 = f(x)$

2. Solve the following quadratic equations by factoring. (No GC)

a.
$$4x^2 - 100 = 0$$

 $4(x^2 - 25) = 0$
 $4(x-5)(x+5) = 0$

b.
$$6x^2 = -5x + 21$$

$$(2x-3)(3x+7)=0$$

$$x = \frac{3}{2}$$
 $x = -\frac{7}{3}$

3. Solve the following quadratic equation by graphing. $f(x) = x^2 - 3x - 1$

$$X = -.303$$
 $X = 3.3$

$$x = 3.3$$

Transformations right 2 down 16

Directions: For each of the following find the vertex, axis of symmetry, y-intercept, domain, range, maximum/minimum value, and find the x-intecepts. State the transformations and sketch the quadratic. (No GC)

4.
$$f(x) = (x-2)^2 - 16$$

$$X = 2$$

5.
$$y = -x^2 + 2x + 3$$

$$\frac{-2}{(2)(-1)} = \frac{x - 1nt}{(x + 1)(-x + 3)}$$

$$-1^2 + 2(1) + 3 = 4 \qquad (-1,0) (3,0)$$

$$\sqrt{(1,+1)} \qquad \text{Transforma}$$

$$\sqrt{(0,3)} \qquad \text{reflect over}$$

$$\sqrt{(0,3)} \qquad \sqrt{(1,+1)} \qquad \sqrt{(1,+1)}$$

R: Y= 4

max = 4

$$\frac{x-1n+}{(x+1)(-x+3)=0}$$

Transformations reflect over x-axx right 1

- 6. The height of a bridge is given by $h(x) = -3x^2 + x$, where h(x) is the height of the bridge (in miles) and x is the number of miles from the base of the bridge.
- a. How far form the base of the bridge does the maximum height occur?

b. What is the maximum height of the bridge?