Algebra II

Trigonometry Review

Name

Solve the following triangles given the following.

- 1. Right triangle ABC, with right angle C, has side a = 12 and Angle B = 63°. $\angle A = 27^{\circ}$, b = 260° C= 26.5° 2. Right triangle ABC, with right angle A, has side b = 71 and side a = 83. $\angle B = 59^{\circ} \angle C = 31^{\circ} = 42.99$
- 3. As shown in the diagram, a pole TF, is on the roof of a shed, FB. From a point P, on the ground 27 feet from the foot of the shed, the measure of the angle of elevation to the top of the pole, T, is 38°, and the measure of the angle of elevation to the foot of the pole, F, is 32°. Determine the height of the pole to the nearest tenth of a foot.

$$tan32 = \frac{FB}{27}$$
 FB=16.9
 $TF = TB - FB$
= 4.2

4. Find $sin(\theta)$, $cos(\theta)$ and $tan(\theta)$ for each of the following triangle.

$$Sin\theta = \frac{10}{26} = \frac{5}{13}$$

$$\cos \theta = \frac{24}{26} = \frac{12}{13}$$

$$\tan \theta = \frac{10}{24} = \frac{5}{12}$$

5. Find the value of x for the following right triangle.

6. If $tan(\theta) = \frac{24}{7}$ and θ is in Quadrant III, find $sin(\theta)$ and $cos(\theta)$

$$Sin \Theta = -\frac{24}{25}$$
 $Cos \Theta = \frac{7}{25}$
Convert each degree measure into radians and each radian measure into degrees.

7.
$$\frac{200^{\circ}}{180} = \frac{10\pi}{9}$$

8.
$$\frac{3\pi}{10} = \frac{180}{11}$$

Find one positive angle and one negative angle that are coterminal with the given angle.

9.
$$\frac{5\pi}{4}$$
 $\frac{131}{4}$, $-\frac{311}{4}$

Draw the following angles in standard position.

11.
$$\frac{7\pi}{6}$$

Match the following angle measure with the angle.

14.
$$\frac{5\pi}{3}$$

15.
$$-\frac{11\pi}{6}$$
 B

8.

C.

With your calculator find the following to 4 decimal places.

17.
$$\sin 40^\circ = 6428$$

18.
$$\cos -\frac{7\pi}{4} = .7071$$

19.
$$\sin 45^\circ = \sqrt{2}$$

Evaluate the function without using a calculator. 19.
$$\sin 45^\circ = \frac{\sqrt{2}}{2}$$
 20. $\cos 210^\circ = \frac{\sqrt{3}}{2}$ 21. $\tan -240^\circ = \frac{-\sqrt{3}}{1} = -\sqrt{3}$

22.
$$\sin \frac{\pi}{2} = 1$$

22.
$$\sin \frac{\pi}{2} =$$
 23. $\cos -\frac{\pi}{2} =$ 24. $\tan \pi =$

24.
$$\tan \pi =$$

25. Find sin θ , cos θ , and tan θ if (20, -21) is on the terminal side of angle θ in standard position. (Hint: Draw the angle in standard position)

$$\begin{array}{c|c}
\hline
20 \\
\hline
20 \\
\hline
29 \\
\hline
-21 \\
\hline
\cos \Theta = \frac{20}{29} \\
\hline
+49 \\
\hline
\Theta = \frac{-21}{20}
\end{array}$$

$$SIN\theta = \frac{-21}{29}$$

$$\cos \Theta = \frac{20}{29}$$

Fill in the following table then graph each of the following.

Period:	Increment:	Pattern:	
SA:	Max:	Min:	

26.
$$f(x) = -3\sin(2x) - 1$$

$$\iint_{A} \frac{1}{4} \quad \text{if } M'_{1}$$
Find the equation of the following sinusoids.

27.
$$y = \cos(\pi x) + 3$$
 $a = \frac{1}{4}$

Mimim

 $1/23$
 $1/2$

