Vocabulary Ch. 1-2

Chapter 1

Data

Individuals

Categorical Variables

Data Analysis

Frequency Table

Relative Frequency Table

Pie Chart

Bar Graph

Two-way Table

Marginal Distributions

Conditional Distributions

Dot Plot

Stemplot

Histogram

SOCS

Symmetric

Skewed Left

Skewed Right

Mean

Median

Variability

Quartiles

Interquartile Range (IQR)

1.5(IQR) Rule

5-number summary

Boxplot

Range

Variance

Standard Deviation

Mosaic Plot

Chapter 2

Percentile

Cumulative relative frequency graph

Ogive

Standardized Score (z-score)

transforming data

density curve

median of a density curve

mean of a density curve

Normal curves

Normal Distributions

68-95-99.7 rule

Standard normal distribution

Standard normal table

Normal probability plot

Vocabulary Ch. 3 – 4

Chapter 3

Scatterplots

Explanatory Variable Response Variables

Direction (positive, negative, no linear association)

Form (linear, curved, cluster, other)

Strength Outliers

Correlation (r) Regression line

Predict y from a given x Interpret y-intercept in context Interpret slope in context

Extrapolation

Least-squares regression line

Residuals Residual plot

Standard deviation of the residuals Coefficient of determination (r²)

High leverage point

Outlier

Influential point

CORRELATION DOES NOT IMPLY CAUSATION!!!!

Chapter 4

Population vs. Sample

Census Sample Survey

Inference

Convenience Sample

Voluntary Response Sample

Bias

Random sampling

Random Numbers and the Random Digit Table

Simple Random Sample (SRS)

Strata

Stratified Random Sample

Cluster Sample

Undercoverage

Nonresponse

Response Bias Question wording

Observational Study **Experiment**

Confounding Treatment

Systematic Random Sampling

Transforming to achieve linearity

Power model

Exponential Model

Subject

Experimental Unit

Explanatory Variable (Factor)

Response Variable

Principles of Experimental Design

Comparison

Random Assignment

Control

Replication

Completely Randomized Design

Placebo Effect Single-Blind Double-Blind

Statistically Significant

Block

Randomized Block Design Matched Pairs Design Inference about a Population Inference about Cause and Effect

Lack of Realism **Establishing Causation**

Ethics of Collecting Data

Note: Be very careful to distinguish the vocabulary of sampling methods from the vocabulary of experimental design.

Many of these terms can seem to be interchangeable but THEY ARE NOT!!!

AP Statistics Vocabulary Ch. 5 & 6

Chapter 5

Randomness Probability Simulation Law of Large Numbers

Probability model Sample Space

Probability rules

Event Probability notation Disjoint events **Independent Events** Two-way table

Tree diagram

Venn diagram Conditional probability General addition rule General multiplication rule Intersection Union

Chapter 6

Random Variable

Mean of a Random Variable

Standard deviation of a Random Variable

Variance of a Random Variable

Expected Value

Random Variable notation

Rules for multiplying Random Variables by a constant

Rules for adding or subtracting a constant to Random Variables

Normal Distribution as a Probability Distribution

Adding or Subtracting Random Variables

Discrete Random Variable

Continuous Random Variable

Independent Random Variables

Interpret the mean of a Random Variable

Interpret the standard deviation of a Random Variable

Probability distribution

Effects of a Linear Transformation on a Random Variable

Mean of the sum or difference of two Random Variables

Variance of the sum or difference of two Random Variables

Combining Normal Random Variables

Binomial Distribution

The Binomial Setting

Binomial Random Variables

Binomial Probabilities

Binomial Coefficient

Binomial Probability Formula

Factorial

Mean of a Binomial Distribution

Standard deviation of a Binomial distribution

10% Condition

Normal approximation to the Binomial distribution

Large Counts condition

Vocabulary Ch. 7 & 8

Chapter 7

Parameter

Statistic

Population distribution

Distribution of sample data

Sampling distribution

Unbiased estimator

Biased estimator

Variability

Sampling distribution of \hat{p}

Mean
$$\mu_{\hat{p}} = p$$

Standard deviation
$$\sigma_{\hat{p}} = \sqrt{\frac{p(1-p)}{n}}$$

10% condition

Normal approximation $np \ge 10$ and $n(1-p) \ge 10$

Sampling distribution of \bar{x}

Mean
$$\mu_{\overline{x}} = \mu$$

Standard deviation
$$\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}}$$

Central Limit Theorem

Chapter 8

Point estimator

Point estimate

C% confidence interval

Confidence Level

"We are C% confident that the interval ____ to___ captures the (parameter in context)

Margin of error

Margin of error effected by confidence level and sample size

Conditions for CI for proportions: Random, 10% if sampling without replacement, Large count $(n\hat{p} \text{ and } n(1-\widehat{p}) \text{ both greater than } 10)$

Confidence interval for proportion $\hat{p} \pm z^* \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$

State, Plan, Do, Conclude

Margin of Error
$$\geq z^* \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

Standard error for sample proportion $\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$

Sampling distribution of difference of sample proportions: $p_1 - p_2$

Conditions for confidence interval procedures about difference in population proportions:

For large count use: $n_1\hat{p}_1$, $n_1(1-\hat{p}_1)$, $n_2\hat{p}_2$, $n_2(1-\hat{p}_2)$ need to be at least 10.

Standard error of the statistic $\sqrt{\frac{\hat{p}_1(1-\hat{p}_1)}{n_1} + \frac{\hat{p}_2(1-\hat{p}_2)}{n_2}}$

Two-sample z interval for difference in population proportions:

$$\hat{p}_1 - \hat{p}_2 \pm z^* \sqrt{\frac{\hat{p}_1(1-\hat{p}_1)}{n_1} + \frac{\hat{p}_2(1-\hat{p}_2)}{n_2}}$$

Vocabulary Ch. 9 – 10

Chapter 9

Significance test

Hypotheses

Null hypothesis

Alternative hypothesis

P-Value

Statistically significant

Significance level

One-sided alternative hypothesis

Two-sided alternative hypothesis

Type I Error

Type II Error

Power of the test (What increases/decreases power?)

Test statistic

Four-step process for significance tests

One-sample z test for a proportion:
$$z = \frac{(\hat{p} - p_o)}{\sqrt{\frac{p_o(1 - p_o)}{n}}}$$

Conditions for performing a significance test about a population proportion:

For large count use np_o , $n(1-p_o)$ need to be at least 10.

Two-sided tests and confidence intervals
Interpreting Type I and Type II errors in context

Conditions for significance test procedures about difference in population proportions:

For large count use: $n_1\hat{p}_c$, $n_1(1-\hat{p}_c)$, $n_2\hat{p}_c$, $n_2(1-\hat{p}_c)$ need to be at least 10.

Combined sample proportion. $\hat{p}_c = \frac{X_1 + X_2}{n_1 + n_2}$

Two-sample z test for difference in population proportions: $z = \frac{\left(\hat{p}_1 - \hat{p}_2\right) - 0}{\sqrt{\frac{\hat{p}_c\left(1 - \hat{p}_c\right)}{n_1} + \frac{\hat{p}_c\left(1 - \hat{p}_c\right)}{n_2}}}$

Chapter 10

Confidence interval for mean $\bar{x} \pm t^* \frac{s}{\sqrt{n}}$

t-distribution

degrees of freedom (n-1)

standard error
$$SE_{\bar{x}} = \frac{s}{\sqrt{n}}$$

Conditions for CI for means: Random, 10% if sampling without replacement, Large Count (normal population, n>30 (CLT) or sample is approx. normal)

If looking for sample size for specific margin of error use z* since we don't know sample size

Sampling distribution of difference of sample means: $\bar{x}_1 - \bar{x}_2$

Conditions for confidence interval procedures about difference in population means.

Standard error of the statistic $\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$

Two sample t-interval for the difference between two means: $(\overline{x}_1 - \overline{x}_2) \pm t^* \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$

Degrees of freedom for two-sample t-interval

Paired data vs. 2 sample data

Vocabulary Ch. 11 - 12

Chapter 11

One-sample t test for a mean: $t = \frac{(\overline{x} - \mu_o)}{\frac{S_x}{\sqrt{n}}}$

Conditions for performing a significance test about a population mean

Conditions for significance test procedures about difference in population means.

Two sample t-test for the difference between two means: $t = \frac{\left(\overline{x}_1 - \overline{x}_2\right) - \left(\mu_1 - \mu_2\right)}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$

Degrees of freedom for two-sample t test

Paired data vs. 2 sample data

Chapter 12

One-way table

Chi-square goodness of fit test

Observed count

Expected count

Chi-square statistic

Conditions - Random, 10%, Large Count

Chi-square distribution

Components

Degrees of freedom

Two-way table

Chi-square test for homogeneity

Chi-square test for association/independence

Chapter 12.3

Sample regression line

Population regression line

Conditions -LINER (linear, independent, normal, equal standard deviation, random)

t-interval for the slope

standard error of the slope

t-test for the slope

degrees of freedom (n-2)